M1.(a)	(i)	3(-120) - (-208) = -152						
		0R 3(12	20) – 2	08 = 152 (kJ mol ⁻¹)				
		,	,	Must show working and answer and maths must	be correct,			
				but ignore sign		1		
						1		
			(ii)	Electrons <u>delocalised</u> OR <u>delocalisation</u> (QOL)				
				ertailow reference to resonance (QOE)		1		
		(b)	х, у	, w				
				Must be in this order		1		
						-		
		(c)	(i)	-240 (kJ mol ⁻¹)				
			()	Must have minus sign				
						1		
			(ii)	between -239 and -121 (kJ mol ^{-1})				
				Must have minus sign		1		
			(iii)	Must specify which diene:				
			(11)	Must specify which diene.				
				Proximity – for 1,3 C=C bonds are close together				
				allow converse for 1,4 diene				
					M1	1		
						1		
				Delocalisation – for 1.3 some delocalisation				
				OR				
				some overlap of electrons, π clouds or p orbitals				
				allow converse for 1,4 diene				
					M2			
						1		
				some extra stability for the 1,3- isomer				
					M3			
						1		

M2.(a) Sn / HCl **OR** Fe / HCl not conc H_2SO_4 nor any HNO_3

Ignore subsequent use of NaOH

Ignore reference to Sn as a catalyst with the acid Allow H_2 (Ni / Pt) but penalise wrong metal But NOT NaBH₄ LiAlH₄ Na / C₂H₅OH

Equation must use molecular formulae

C₆H₄N₂O₄ + 12 [H] 12[H] and 4H₂O without correct molecular formula scores 1 out of 2

 $\label{eq:c_bH_bN_2} \begin{array}{l} \rightarrow C_6 H_8 N_2 + 4 H_2 O \\ \mbox{Allow} \ \ + \ 6 H_2 \ \ if \ H_2 \ / \ Ni \ used \\ \mbox{Allow} \ - CONH- \ or \ - COHN- \ or \ - C_6 H_4 - \end{array}$

Mark two halves separately: lose 1 each for

- error in diamine part
- error in diacid part
- error in peptide link
- missing trailing bonds at one or both ends
- either or both of H or OH on ends

Ignore n

(b) H₂ (Ni / Pt) but penalise wrong metal NOT Sn / HCI, NaBH₄ etc. 2

1

1

1

1

In cyclohexane 109° 28' or 109½° *Allow 108*° - *110*°

If only one angle stated without correct qualification, no mark awarded

(ii) M1 Planar C=O (bond / group) Not just planar molecule

M2 Attack (equally likely) from either side

1

1

1

1

4

1

Not just planar bond without reference to carbonyl

1

 $2 \text{ H}_2\text{SO}_4 + \text{HNO}_3 \rightarrow 2 \text{ HSO}_4^- + \text{NO}_2^+ + \text{H}_3\text{O}^+$

M3.

OR

 $\mathrm{H_2SO_4} + \mathrm{HNO_3} \rightarrow \mathrm{HSO_4^-} + \mathrm{NO_2^{+}} + \mathrm{H_2O}$

OR via two equations

 $H_2SO_4 + HNO_3 \rightarrow HSO_4^- + H_2NO_3^+$

 $H_2NO_3 + \rightarrow NO_2^{+} + H_2O$ Allow + anywhere on NO_2^{+}

 $M1 \qquad M3$ $M1 \qquad \longrightarrow M2$ $M1 \qquad M2$ $M1 \qquad M3$ $M2 \qquad M2$ $M3 \qquad M2$ $M2 \qquad M3$ $M3 \qquad M3$ M3

M1 arrow from within hexagon to N or + on N Allow NO₂⁺ in mechanism horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure ignore base removing H in M3 + on H in intermediate loses M2 not M3

3

1

(c) If intermediate compound V is wrong or not shown, max 4 for 8(c)

or chlorocyclohexane or bromocyclohexane

Reaction 3

	M2 HBr	1				
	M3 Electrophilic addition Allow M2 and M3 independent of each other	1				
	Reaction 4					
	M4 Ammonia if wrong do not gain M5					
	Allow M4 and M6 independent of each other	-				
	M5 Excess ammonia or sealed in a tube or under pressure	1				
	If CE e.g. acid conditions, lose M4 and M5					
	M6 Nucleophilic substitution	1				
(d)	Lone or electron <u>pair on N</u> No marks if reference to "lone pair on N" missing	1				
	Delocalised or spread into ring in U	1				
	Less available (to accept protons) or less able to donate (to $H^{}$)	1				

[19]